

160A MIG ARC WELDER

DC INVERTER

MODEL# MIGARC160

OPERATING INSTRUCTIONS

TO PREVENT SERIOUS INJURY, READ & UNDERSTAND ALL WARNING & INSTRUCTIONS BEFORE USE ------KEEP THIS DOCUMENT-----

GENERAL SAFETY RULES	
IMPORTANT SAFETY CONSIDERATIONS	2
Your Welding Environment	2
Your Machine's Condition	2
Use of Your Machine	3
Specific Areas of Danger, Caution or Warning	3
Proper Care, Maintenance and Repair	6
Caring for the Environment	7
Transport & Storage	7
Description	8
Unpacking	8
Specifications and Dimension	9
Know your Welder	9
Installation	11
1. Power requirement	
2. Extension cord	
3. Setting up the work piece	11
4. Ground clamp connection	
5. Setting the wire tension	
6.Gas installation	13
Operation	
MIG GMAW welding operation	
ARC MMA Operation	
TIG OPERATION	
Trouble shooting Chart	
Main Circuit chart	
Spare Part List	.29
WARRANTY INFORMATION	3 1

GENERAL SAFETY RULES

WARNING: Read and understand all instructions. Failure to follow all instructions listed below may result in serious injury.

CAUTION: Do not allow persons to operate or assemble this MIGARC160 until they have read this manual and have developed a thorough understanding of how the MIGARC160

WARNING: The warnings, cautions, and instructions discussed in this instruction manual cannot cover all possible conditions or situations that could occur. It must be understood by the

operator that common sense and caution are factors which cannot be built into this product, but must be supplied by the operator.

SAVE THESE INSTRUCTIONS

IMPORTANT SAFETY CONSIDERATIONS

Your Welding Environment

- Keep the environment you will be welding in free from flammable materials.
- Always keep a fire extinguisher accessible to your welding environment.
- > Always have a qualified person install and operate this equipment.
- Make sure the area is clean, dry and ventilated. Do not operate the machine in humid, wet or poorly ventilated areas.
- Always have your machine maintained by a qualified technician in accordance with local, state and national codes.
- Always be aware of your work environment. Be sure to keep other people, especially children, away from you while welding.
- > Keep harmful arc rays shielded from the view of others.
- Mount the machine on a secure bench or cart that will keep the machine secure and prevent it from tipping over or falling.

Your Machine's Condition

- Check ground cable, power cord and welding torch cable to be sure the insulation is not damaged. Always replace or repair damaged components before using the machine.
- > Check all components to ensure they are clean and in good

operating condition before use.

Use of Your Machine

▲ CAUTION

- Do not operate the machine if the output cable and torch is wet. Do not immerse them in water. These components and the machine must be completely dry before attempting to use them.
- > Follow the instructions in this manual.
- Keep machine in the off position when not in use.
- Connect ground lead as close to the area being welded as possible to ensure a good ground.
- Do not allow any body part to come in contact with the welding wire if you are in contact with the material being welded, ground or electrode from another machine.
- Do not weld if you are in an awkward position. Always have a secure stance while welding to prevent accidents. Wear a safety harness if working above ground.
- > Do not drape cables over or around your body.
- Wear a full coverage helmet with appropriate shade (see AS/NZS 1338.1.1992 safety standard) and safety glasses while welding.
- Wear proper gloves and protective clothing to prevent your skin from being exposed to hot metals, UV and IR rays.
- Do not overuse or overheat your machine. Allow proper cooling time between duty cycles.
- Keep hands and fingers away from moving parts and stay away from the drive rolls.
- > Do not point torch at any body part of yourself or anyone else.
- Always use this machine in the rated duty cycle to prevent excessive heat and failure.

Specific Areas of Danger, Caution or Warning

Electrical Shock AWARNING

Electric arc machines can produce a shock that can cause injury or death. Touching electrically live parts can cause fatal shocks and severe burns. While welding, all metal components connected to the wire are electrically hot. Poor ground connections are a hazard, so secure the ground lead before welding.

- Wear dry protective apparel: coat, shirt, gloves and insulated footwear.
- Insulate yourself from the work piece. Avoid contacting the work piece or ground.
- > Do not attempt to repair or maintain the machine while the

- power is on.
- Inspect all cables and cords for any exposed wire and replace immediately if found.
- > Use only recommended replacement cables and cords.
- Always attach ground clamp to the work piece or work table as close to the weld area as possible.
- Do not touch the torch cable and the ground or grounded work piece at the same time.
- > Do not use a machine to thaw frozen pipes.

Fumes and Gases AWARNING

- Fumes emitted from the welding process displace clean air and can result in injury or death.
- Do not breathe in fumes emitted by the welding process. Make sure your breathing air is clean and safe.
- Work only in a well ventilated area or use a ventilation device to remove welding fumes from the environment where you will be working.
- Do not weld on coated materials (galvanized, cadmium plated or containing zinc, mercury or barium). They will emit harmful fumes that are dangerous to breathe. If necessary use a ventilator, respirator with air supply or remove the coating from the material in the weld area.
- The fumes emitted from some metals when heated are extremely toxic. Refer to the material safety data sheet for the manufacturer's instructions.
- Do not cut near materials that will emit toxic fumes when heated. Vapors from cleaners, sprays and degreasers can be highly toxic when heated.

UV and IR Arc Rays A DANGER

- The welding arc produces ultraviolet (UV) and infrared (IR) rays that can cause injury to your eyes and skin. Do not look at the welding arc without proper eye protection.
- Always use a helmet that covers your full face from the neck to top of head and to the back of each ear.
- Use a lens that meets AS/NZS 1338.1.1992 safety standard and safety glasses. For machines under 160 Amps output, use a shade 10 lens; for above 160 Amps, use a shade 12. Refer to the AS/NZS

- 1338.1.1992 safety standard for more information.
- Cover all bare skin areas exposed to the arc with protective clothing and shoes. Flame retardant cloth or leather shirts, coats, pants or coveralls are available for protection.
- Use screens or other barriers to protect other people from the arc rays emitted from your welding.
- Warn people in your welding area when you are going to strike an arc so they can protect themselves.

Fire Hazards AWARNING

- Do not cut on containers or pipes that contain or have had flammable, gaseous or liquid combustibles in them. Welding creates sparks and heat that can ignite flammable and explosive materials.
- Do not operate any electric arc machine in areas where flammable or explosive materials are present.
- Remove all flammable materials within 35 feet of the welding arc. If removal is not possible, tightly cover them with fireproof covers.
- > Take precautions to ensure that flying sparks do not cause fires or explosions in hidden areas, cracks or areas you cannot see.
- > Keep a fire extinguisher close in the case of fire.
- Wear garments that are oil free with no pockets or cuffs that will collect sparks.
- Do not have on your person any items that are combustible, such as lighters or matches.
- Keep work lead connected as close to the weld area as possible to prevent any unknown, unintended paths of electrical current from causing electrical shock and fire hazards.
- > To prevent any unintended arcs, cut torch cable shall be back to 1/4" stick out after welding.

- Cut materials are hot and can cause severe burns if handled improperly.
- Do not touch cut materials with bare hands.
- Do not touch welding torch nozzle after welding until it has had time to cool down.

Sparks/Flying Debris

A CAUTION

- Welding creates hot sparks that can cause injury.
- Chipping slag off welds creates flying debris.
- Wear protective apparel at all times: AS/NZS 1338.1.1992 SAFETY STANDARD approved safety glasses or shield, machine's hat and ear plugs to keep sparks out of ears and hair.

Electromagnetic Field

A CAUTION

- > Electromagnetic fields can interfere with various electrical and electronic devices such as pacemakers.
- Consult your doctor before using any electric arc machine or welding device
- Keep people with pacemakers away from your welding area when welding.
- > Do not wrap cable around your body while welding.
- > Wrap welding torch and ground cable together whenever possible.
- Keep welding torch and ground cables on the same side of your body.

Shielding Gas Cylinders Can Explode

AWARNING

- High pressure cylinders can explode if damaged, so treat them carefully.
- Never expose cylinders to high heat, sparks, open flames, mechanical shocks or arcs.
- > Do not touch cylinder with welding torch
- Do not cut on the cylinder
- > Always secure cylinder upright to a cart or stationary object.
- > Keep cylinders away from welding or electrical circuits.
- Use the proper regulators, gas hose and fittings for the specific application.
- > Do not look into the valve when opening it.
- Use protective cylinder cap whenever possible

Proper Care, Maintenance and Repair A DANGER

Always have power disconnected when working on internal components. Do not touch or handle PC board without being properly grounded with a wrist strap. Put PC board in static proof bag to move or ship. Do not put hands or fingers near moving parts such as drive rolls of fan

MIGARC160 USE AND CARE

Do not modify the MIGARC160 in any way. Unauthorized modification may impair the function and/or safety and could affect the life of the equipment. There are specific applications for which the MIGARC160 was designed.

- Always check of damaged or worn out parts before using the MIGARC160. Broken parts will affect the MIGARC160 operation. Replace or repair damaged or worn parts immediately.
- When MIGARC160 is not in use, store it in a secure place out of the reach of children. Inspect it for good working condition prior to storage and before re-use.

Caring for the Environment

When a tool is no longer usable it should not be disposed of with household waste, but in an environmentally friendly way. Please recycle where facilities exist. Check with your local council authority for recycling advice.

Recycling packaging reduces the need for landfill and raw materials. Reuse of recycled material decreases pollution in the environment. Please recycle packaging where facilities exist. Check with your local council authority for recycling advice.

Transport & Storage

- > Hold the handle or the bottom to move it.
- > The machines should be firmly secured during transportation.
- > The machines should be stored out of the rain.
- > Keep notice of Attention sign on the packing box.

Description

The MIGARC160 series is a DC inverter MIG welder. This unit uses 1~Phase 240V,60HZ AC power. A time delay fuse or circuit breaker is recommended. The MIGARC160 series is ideal for project work or for light maintenance and is capable of welding carbon steel and stainless steel.

1.1 Remove cartons, bags or Styrofoam containing the welder and accessories.

1.2 Check the contents with the packing list below.

ITEM	QTY.
DC Inverter MIG Welder Power Source	1 unit
3m MIG gun	1pcs
3m cable with earth clamp	1pcs
4m Gas hose ∮8	1pcs
0.6mm contact tip	1pcs
0.8mm contact tip	1pcs
0.9mm contact tip	1pcs
1.0mm contact tip	1pcs
V 0.6-0.9mm Roller Solid Wire	1pcs
Knurled 0.8-1.0mm Roller (Flux Cored Wire)	1pcs
Wrench	1pcs
Operator's Manual	1set

1.3 After unpacking unit, inspect carefully for any damage that may have occurred during trAS/NZS 1338.1.1992 safety standard. Check for loose, missing, or damaged parts.

Specifications and Dimension

Description		Specification
Model		MIGARC160
Input power V		240
Frequency Hz		50
Rated input current A		28.5
Rated input capacitance KVA		6.8
No-load voltage	V	71
Rated working voltage	V	22
MIG welding current	Α	30~160
Rated duty cycle	%	30
Welding current (10min)	Α	25%@160
10min/100%	Α	88
Efficiency	η	85%
Power factor	Cos∮	0.75
Insulation class		Н
Enclosure protection	ΙP	21S
Cooling type	•	Fan cooled
Dimension		524*242*411
L×W×H	mm	J24 242 411
Weight	kg	13

Know your Welder

POWER INDICATOR

When the machine is turned on, the power indicator will be on.

ALARM INDICATOR

When the thermal indictor is on, it shows the machine is overloaded and the internal temperature is too high. Weld output will turn off automatically but the fan will still be working. When the internal temperature is decreased, the overload light will turn off and the machine will be ready to weld.

WORK INDICATOR

Lights up when the unit is production weld power.

WEI DING VOLTAGE

Set output voltage and wire speed. Refer to the "set up" chart inside the wire feed compartment.

WIRE SPEED ADJUST

Adjusts the wire feeding/amperage speed.

MIG/ STICK/TIG SELECTOR

When normal MIG welding, this switch should be turned in "MIG" position, when using the stick welding, the switch should be in "stick" position.

2T/4T SELECTOR

switch for torch setting, 2T or 4T.

MIG GUN

The welding wire is driven through the welding cable and MIG gun to the work piece. It is attached to the drive system.

POWER SWITCH

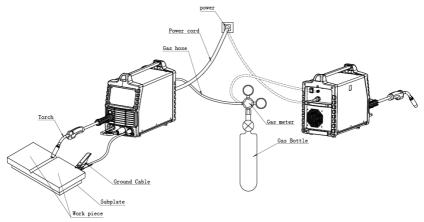
In the "OFF" position no power is being supplied.

In the "ON" position power is supplied to the main transformer and control circuit.

POWER CORD

The power cord connects the welder to the 240V power supply. 20A receptacle to supply power to the welder.

CABLE WITH EARTH CLAMP


Use earth clamp to connect earth cable with work piece.

GAS HOSE

Used to connect the machine to the regulator.

Installation

Outside Connection of the Machine

1. Power requirement

AC single phase 240V,50HZ fused with a suitable time delayed fuse or circuit breaker is required.

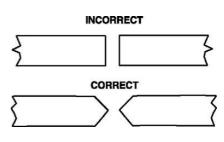
AWARNING

- The equipment class of MIGARC160 series DC Inverter MIG Welder is class A. The class A equipment is not intended for use in residential locations where the electrical power is provided by the public low-voltage supply system.
- •High voltage danger from power source! Consult a qualified electrician for proper installation of plug. This welder must be grounded while in use to protect the operator from electrical shock.
- Do not remove grounding prong or alter the plug in any way. Do not use any adapters between the welder's power cord and the power source receptacle. Make sure the POWER switch is OFF when connecting your welder's power cord to a properly grounded 240Vac, 50/60Hz, single phase, 15A power source.

2. Extension cord

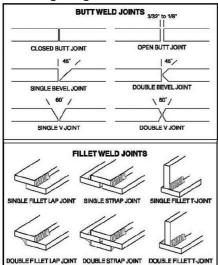
During normal use an extension cord is not necessary. It is strongly recommended that an extension cord should not be used because of the voltage drop they produce. This drop in voltage can affect the performance of the welder. Do not use an extension cord over 8m in length.

3. Setting up the work piece


3.1 Welding positions

There are two basic positions, for welding: Flat and Horizontal. Flat

welding is generally easier, faster, and allows for better penetration. If possible, the work piece should be positioned so that the bead will run on a flat surface.


3.2 Preparing the Joint

Before welding, the surface of work piece needs to be free of dirt, rust, scale, oil or paint. Or it will create brittle and porous weld. If the base metal pieces to be joined are thick or heavy, it may be necessary to bevel the edges with a metal grinder. The correct bevel should be around 60 degrees.

See following picture:

Based on different welding position, there are different welding joint, see following images for more information

4. Ground clamp connection

Clear any dirt, rust, scale, oil or paint on the ground clamp. Make certain you have a good solid ground connection. A poor connection at the ground clamp will waste power and heat. Make sure the ground clamp touches the metal.

5. Setting the wire tension

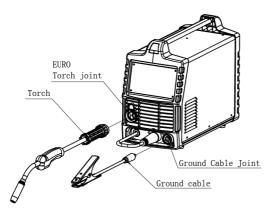
AWARNING

Arc flash can injure eyes! To reduce the risk of arc flash, make certain that the wire coming out of the end of the torch does not come in contact with work piece, ground clamp or any grounded material during the drive tension setting process or arcing will occur.

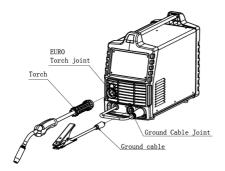
- 5.1. Press the trigger on the torch.
- 5.2. Turn the drive tension adjustment knob clockwise, increasing the drive tension until the wire seems to feed smoothly without slipping.

6.Gas installation

AWARNING

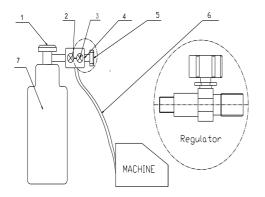

Shielding gas cylinders and high pressure cylinders can explode if damaged, so treat them carefully.

- -Never expose cylinders to high heat, sparks, open flames, mechanical shocks or arcs.
- -Do not touch cylinder with MIG gun.
- -Do not weld on the cylinder.
- -Always secure cylinder upright to a cart or stationary object.
- -Keep cylinders away from welding or electrical circuits.
- -Use the proper regulators, gas hose and fittings for the specific application.


When MIG (solid) wires are used, the shielding gas is required.

6.1 Settings of different wire welding ways

With gas shied welding output line-connection (DCEP):



Without gas shield welding (DCEN):

- 6.1.1 Change the welding mode to MIG welding mode;
- 6.1.2 For gas welding use DCEP setup, with earth clamp plugged into the negative polarity socket.
- 6.1.3 For gasless welding use DCEN setup, with earth clamp plugged into the positive polarity socket.
- 6.2. The gas hose, regulator and gas cylinder connection

Attach one end of the gas hose to the gas solenoid valve (gas inlet) located on the back panel of the welder. Attach the other end to the gas regulator which is attached to the shielding gas cylinder. See illustration below

- 1) Cylinder valve: Controls GAS CYLINDER gas flow.
- 2) Cylinder pressure gauge
- Gas flow gauge, see set up charts for recommended settings
- 4) Regulator
- 5) Adjustment knob controls gas pressure to the welder.
- 6) Gas hose
- Gas cylinder

NOTE:

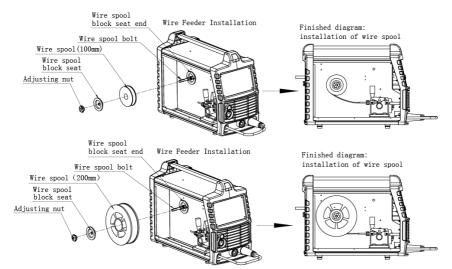
Slowly open the cylinder valve by turning it counterclockwise until the cylinder pressure gauge registers on the first gauge of the regulator. Turn the adjustment knob clockwise (right) slowly to increase gas flow (check the set up guide on the machine for guidelines on gas flow). To reduce the gas flow, turn the adjustment counterclockwise (left). The gas valve is

located on the back panel of the welder and activated by the trigger. Gas flow should be heard when the trigger is activated. .

Different materials require different shielding gas when MIG welding, refer to the set up chart inside the wire feed compartment.

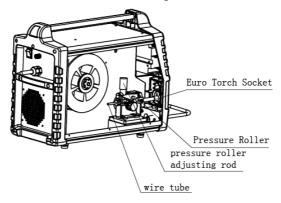
6.3. Gas selection

Materials - Shielding Gas Types

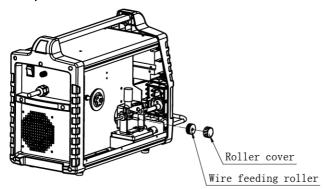

Mild steel: Use Argon 5/2 for reduced spatter and reduced penetration for thinner materials.

Mild Steel: Use CO2 for deeper penetration but increased spatter.

Stainless steel: Use Argon 98% and CO2 2%


Aluminum or bronze: Use 100% Argon

7. Installation of wire spool


- 6.1 Open the door on the side of the machine, rotate the adjusting nut on the wire shaft anti-clockwise to remove it from the wire spool screw, and then remove the wire spool block seat;
- 6.2 Install the wire spool on the screw, fit the block seat and tighten up the adjusting nut. Ensure the wire spool moves freely.

8 Installation of the wire feeder and right connection of the wire

- 8.1 While installing the wire spool, check the contact tip that is installed on the MIG torch and the roller installed on the wire feed motor is of the correct diameter.
- 8.2 Open the wire feed motor by moving back the adjusting rod to release the tensioner.
- 8.3 Insert the wire to the wire feeder through the wire tube and turn the wire spool to feed through the wire feeder until it comes through to the EURO torch socket by around 50mm.
- 8.4 Reinstate the tensioner and adjust the tension.
- 8.5 Install the MIG torch and press/hold down the trigger to feed the wire through to the end of the MIG torch.

9. Replacement of roller

9.1 open the door of the machine shell. Please remove the wire first if there is still wire on the wire feeder;

9.2 release tension from the wire feed motor:

9.3 grab the wire feed roller with hands to pull it out slightly, then uninstall the needed wire feeder and wire feeding roller from the shaft;

Notice: Do not use a hammer to install the roller.

9.4 after the installation of wire roller, screw the cover clockwise tightly. Make sure the screw thread connection is correct, to avoid damaging of the screw thread due to the connection deviation.

Remark: the spec's marked on the front of the roller is the size of roller groove in the back of the roller, i.e the size of the roller in use.

Operation **AWARNING**

High voltage danger from power source! Consult a qualified electrician for proper installation of receptacle at the power source. This welder must be grounded while in use to protect the operator from electrical shock. If you are not sure if your outlet is properly grounded, have it checked by a qualified electrician. Do not cut off the grounding prong or alter the plug in any way and do not use any adapters between the welder's power cord and the power source receptacle. Make sure the POWER switch is OFF before connecting your welder's power cord to a properly grounded 240VAC(220V-240V), 50Hz, single phase power source.

MIG GMAW welding operation

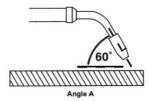
1. Main control component

Power switch - The power switch supplies electrical current to the welder. Whenever the power switch is in the ON position, the welding circuit is activated. ALWAYS turn the power switch to the OFF position and unplug the welder before performing any maintenance.

Voltage selector - The voltage selector controls the welding heat. This unit has infinite voltage control. Refer to the label inside the welder side door for recommended voltage selector settings for your welding job.

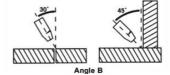
Wire speed control - The wire speed control adjusts the speed at which the wire is fed out of the welding torch. The wire speed needs to be closely matched (tuned-in) to the rate at which it is being melted off. Some things that affect wire speed selection are the type and diameter of the wire being used, the heat setting selected, and the welding position to be used.

Note: The wire will feed faster without an arc. When an arc is being drawn, the wire speed will slow down.


2. Hold the torch

The best way to hold the welding torch is the way that feels most comfortable to you. While practicing to use your new welder, experiment holding the torch in different positions until you find the one that seems to work best for you.

3. Position the torch to the work piece


There are two angles of the torch nozzle in relation to the work piece that must be considered when welding.

3.1. Angle A can be varied, but in most cases the optimum angle will be 60 degrees, the point at which the torch handle is parallel to

the work piece. If angle A is increased, penetration will increase. If angle A is decreased, penetration will decrease also.

3.2. Angle B can be varied for two reasons: to improve the ability to see the arc in relation to the weld puddle and to direct the force of the arc.

4. Distance from the work piece

If the nozzle is held off the work piece, the distance between the nozzle and the work piece should be kept constant and should not exceed 6.4mm or the arc may begin sputtering, signaling a loss in welding performance.

5. Fine tuning the wire speed

This is one of the most important parts of MIG welder operation and must be done before starting each welding job or whenever any of the following variables are changed: heat setting, wire diameter, or wire type.

AWARNING

EXPOSURE TO A WELDING ARC IS EXTREMELY HARMFUL TO THE EYES AND SKIN!

Prolonged exposure to the welding arc can cause blindness and burns. Never strike an arc or begin welding until you are adequately protected. Wear flameproof welding gloves, a heavy long sleeved shirt, trousers with no cuffs, high topped shoes, and an AS/NZS 1338.1.1992 SAFETY STANDARD approved welding helmet.

5.1. Connect the Ground Clamp to a scrap piece of the same type of material which you will be welding. It should be equal to or greater than the thickness of the actual work piece, and free of oil, paint, rust, etc.

5.2. Select a heat setting. Refer to set up chart

- 5.3. Hold the torch in one hand, allowing the nozzle to rest on the edge of the work piece farthest away from you, and at an angle similar to that which will be used when welding. (See HOLDING THE TORCH if you are uncertain of the angle at which you will be welding).
- 5.4. With your free hand, turn the Wire Speed Dial to maximum and continue to hold onto the knob.
- 5.5. Lower your welding helmet and pull the trigger on the torch to start an arc, then begin to drag the torch toward you while simultaneously turning the Wire Speed Dial counter-clockwise.
- 5.6. LISTEN! As you decrease the wire speed, the sound that the arc makes will change from a sputtering to a high-pitched buzzing sound and then will begin sputtering again if you decrease the wire speed too much. The point on the wire speed adjustment where the high-pitched buzzing sound is achieved is the correct setting. You can use the wire speed control to slightly increase or decrease the heat and penetration for a given heat setting by selecting higher or lower wire speed settings. Repeat this tune-in procedure if you select a new heat setting, a different diameter wire, or a different type of welding wire.

6. Welding Techniques

AWARNING

EXPOSURE TO A WELDING ARC IS EXTREMELY HARMFUL TO THE EYES AND SKIN! Prolonged exposure to the welding arc can cause blindness and burns. Never strike an arc or begin welding until you are adequately protected. Wear flameproof welding gloves, a heavy long sleeved shirt, trousers without cuffs, high topped shoes and an AS/NZS 1338.1.1992 SAFETY STANDARD approved welding helmet.

ELECTRIC SHOCK CAN KILL! To prevent ELECTRIC SHOCK, do not perform any welding while standing, kneeling, or lying directly on the grounded work.

6.1 Moving the torch

Torch travel refers to the movement of the torch along the weld joint and is broken into two elements: Direction and Speed. A solid weld bead requires that the welding torch be moved steadily and at the right speed along the weld joint. Moving the torch too fast, too slow, or erratically will prevent proper fusion or create a lumpy, uneven bead.

Travel direction is the direction the torch is moved along the weld joint in relation to the weld puddle. The torch is either PUSHED into the weld puddle or PULLED away from

the weld puddle.

For most welding jobs you will pull the torch along the weld joint to take advantage of the greater weld puddle visibility.

Travel speed is the rate at which the torch is being pushed or pulled along the weld joint. For a fixed heat setting, the faster the travel speed, the lower the penetration and the lower and narrower the finished weld bead. Likewise, the slower the travel speed, the deeper the penetration and the higher and wider the finished weld bead.

6.2 Types of welding beads

As you become more familiar with your new welder and better at laying some simple weld beads, you can begin to try some different weld bead types.

The STRINGER BEAD Is formed by traveling with the torch in a straight line while keeping the wire and nozzle centered over the weld joint (See following figure)

The WEAVE BEAD Is used when you want to deposit metal over a wider space than would be possible with a stringer bead. It is made by weaving from side to side while moving with the torch. It is best to hesitate momentarily at each side before weaving back the other way.

6.3 Welding position

FLAT POSITION Is easiest of the welding positions and is most commonly used. It is best if you can weld in the flat position if at all possible as good results are easier to achieve.

HORIZONTAL POSITION Is performed very much the same as the flat weld except that angle B (see HOLDING THE TORCH) is such that the wire, directed more toward the metal above the weld joint is to help prevent the weld puddle from running downward while still allowing slow enough

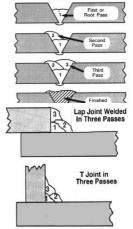
travel speed. A good starting point for angle B is about 30 degrees DOWN from being perpendicular to the work piece.

VERTICAL POSITION Is easier for many people to Pull the torch from top to bottom. It can be difficult to prevent the puddle from

running downward. Pushing the torch from bottom to top may provide better

puddle control and allow slower rates of travel speed to achieve deeper penetration. When vertical welding, angle B (see HOLDING THE TORCH) is usually always kept at zero, but angle A will generally range from 45 to 60 degrees to provide better puddle control.

OVERHEAD POSITION Is the most difficult welding position. Angle A (see HOLDING THE TORCH) should be maintained at 60 degrees. Maintaining this angle will reduce the chances of molten metal falling into the nozzle. Angle B should be held at zero degrees so that the wire is aiming directly into the weld joint. If


you experience excessive dripping of the weld puddle, select a lower heat setting. Also, the weave bead tends to work better than the stringer.

6.4 Multiple pass welding

Butt Weld Joints When butt welding thicker materials you will need to prepare the edges of the material to be joined by grinding a bevel on the edge of one or both pieces of the metal being joined. When this is done, a "V" is created between the two pieces of metal that will have to be welded closed. In most cases more than one pass or bead will need to be laid into the joint to close the "V".

Laying more than one bead into the same weld joint is known as a multiple-pass weld.

The illustrations in following figure show the sequence for laying multiple pass beads into a single "V" butt joint.

NOTE:

WHEN USING SELF-SHIELDING FLUX-CORE WIRE it is very important to thoroughly chip and brush the slag off each completed weld bead before making another pass or the next pass will be of poor quality.

Fillet Weld Joints. Most fillet weld joints, on metals of moderate to heavy thickness, will require multiple pass welds to produce strong joint. The illustrations in Figure 19 show the sequence of laying multiple pass beads into a T fillet joint and a lap fillet joint.

6.5 Spot welding

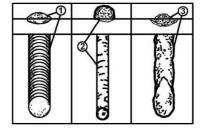
There are three methods of spot welding: Burn-Through, Punch and Fill, and Lap. Each has advantages and disadvantages depending on the specific application as well as personal preference.

- 1. The BURN-THROUGH METHOD welds two overlapped pieces of metal together by burning through the top piece and into the bottom piece. With the burn-through method, larger wire diameters tend to work better than smaller diameters. Wire diameters that tend to work best, with the burn-through method are 0.9mm self-shielding flux-core wire. Do not use 0.8mm self-shielding flux core wires when using the burn-through method unless the metal is VERY thin or excessive filler metal build-up and minimal penetration is acceptable. Always select the HIGH heat setting with the burn-through method and tune in the wire speed prior to making a spot weld.
- 2. The PUNCH AND FILL METHOD produces a weld with the most finished appearance of the three spot weld methods. In this method, a hole is punched or drilled into the top piece of metal and the arc is directed through the hole to penetrate into the bottom piece. The puddle is allowed to fill up the hole leaving a spot weld that is smooth and flush with the surface of the top piece. Select the wire diameter, heat setting, and tune in the wire speed as if you were welding the same thickness material with a continuous bead.
- 3. The LAP SPOT METHOD directs the welding arc to penetrate the bottom and top pieces, at the same time, right along each side of the lap joint seam. Select the wire diameter, heat setting, and tune in the wire speed as if you were welding the same thickness material with a continuous bead.

6.6 Spot welding instructions

- 1. Select the wire diameter and heat setting recommended above for the method of spot welding you intend to use.
- 2. Tune in the wire speed as if you were going to make a continuous weld.
- 3. Hold the nozzle piece completely perpendicular to and about 1/4 inch off the work piece.
- 4. Pull the trigger on the torch and release it when it appears that the desired penetration has been achieved.
- 5. Make practice spot welds on scrap metal, varying the length of time you hold the trigger, until a desired spot weld is made.
- 6. Make spot welds on the actual work piece at desired locations.

7. Electrode


The welding electrode is a rod coated with a layer of flux. When welding, electrical current flows between the electrode (rod) and the grounded metal work piece. The intense heat of the arc between the rod and the grounded metal melts the electrode and the flux. The most popular electrodes are:

- -E6011 60,000 PSI tensile strength deep penetrating applications.
- -E6013 60,000 PSI tensile strength used for poor fit up applications
- -E7014 70,000 PSI tensile strength used for high deposition and fast travel speeds with light penetration
- -E7018 70,000 PSI tensile strength, Used for out of position and tacking.

8. Selecting the proper electrode

There is no golden rule that determine the exact rod or heat setting required for every situation. The type and thickness of metal and the

position of the work piece determine the electrode type and the amount of heat needed in the welding process. Heavier and thicker metals required more amperage. It is best to practice your welds on scrap metal which matches the metal you intend to work with to determine correct heat setting and electrode choice. See following some helpful trouble shooting tips to

determine if you are using a correct electrode.

1. When proper rod is used:

- a. The bead will lay smoothly over the work without ragged edges
- b. The base metal puddle will be as deep as the bead that rises above it
- c. The welding operation will make a crackling sound similar to the sound of eggs frying
- 2. When a rod too small is used:
- a. The bead will be high and irregular
- b. The arc will be difficult to maintain
- 3. When the rod is too large is used:
- a. The arc will burn through light metals
- b. The bead will undercut the work
- c. The bead will be flat and porous
- d. Rod may be freeze or stick to work piece

Note: Rate of travel over the work also affects the weld. To ensure proper penetration and enough deposit of rod, the arc must be moved slowly and evenly along the weld seam.

ARC MMA Operation

1.Setting the amperage control

The welder has an infinite output current control. It is capable of welding with ϕ 1.6mm and ϕ 2.5mm and ϕ 3.2mm electrodes.

here is no golden rule that determines the exact amperage required for every situation. It is best to practice your welds on scrap metal which matches the metals you intend to work with to determine correct setting for your job. The electrode type and the thickness of the work piece metal determine the amount of heat needed in the welding process. Heavier and thicker metals require more voltage (amperage), whereas lighter and thinner metals require less voltage (amperage).

2. Welding techniques

The best way to teach yourself how to weld is with short periods of practice at regular intervals. All practice welds should be done on scrap metal that can be discarded. Do not attempt to make any repairs on valuable equipment until you have satisfied yourself that your practice welds are of good appearance and free of slag or gas inclusions.

2.1 Holding the electrode

The best way to grip the electrode holder is the way that feels most comfortable to you. To Position the Electrode to the work piece when striking the initial arc, it may be necessary to hold the electrode perpendicular to the work piece. Once the arc is started the angle of the electrode in relation to the work piece should be between 10 and 30 degrees. This will allow for good penetration, with minimal spatter.

2.2 Striking the arc

AWARNING

EXPOSURE TO A WELDING ARC IS EXTREMELY HARMFUL TO THE EYES AND SKIN.

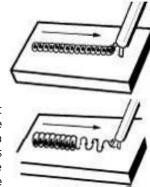
- •Never strike an arc or begin welding until you have adequate protection.
- Wear flameproof welding gloves, heavy longsleeved shirt, cuffless trousers, high-topped Z shoes and a welding helmet or shield.

Scratch the work piece with the end of electrode to start arc and then raise it quickly about 0.32cm gap between the rod and the work piece. See following picture

It is important that the gap be maintained during the welding process and it should be neither too wide or too narrow. If too narrow, the rod will stick to the work piece. If too wide, the arc will be extinguished. It needs much practice to

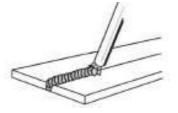
maintain the gap. Beginners may usually get sticking or arc extinguishing. When the rod sticks to the work piece, gently rock it back and forth to make them separate. If not, the circuit is short connection,

and it will overload the welder. A good arc is accompanied by a crisp,

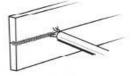

cracking sound. The sound is similar to that made by eggs frying. To lay a weld bead, only 2 movements are required; downward and in the direction the weld is to be laid, as in following figure:

2.3 Types of weld bead

The following paragraphs discuss the most commonly used arc welding beads.

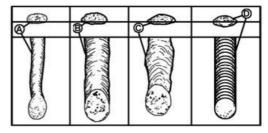

The stringer bead Formed by traveling with the electrode in a straight line while keeping it centered over the weld joint.

The weave bead Used when you want to deposit metal over a wider space than would be possible with a stringer bead. It is made by weaving from side to side while moving with the electrode. It is best to hesitate momentarily at each side before weaving back the other way to improve penetration



Welding position

Flat position is the easiest of the welding positions and is most commonly used. It is best if you can weld in the flat position if at all possible as good results are easier to achieve.


The horizontal positions are performed very much the same as the flat weld except that the angle is different such that the electrode, and therefore the arc force, is directed more toward the metal above the weld joint. This more direct angle helps prevent the weld puddle from

running downward while still allowing slow enough travel speed to achieve good penetration. A good starting point for your electrode angle is about 30 degrees down from being perpendicular to the work piece.

Judge a good weld bead

When the trick of establishing and holding an arc has been learned, the next step is learning how to run a good bead. The first attempts practice will in probably fall short of acceptable weld beads. Too

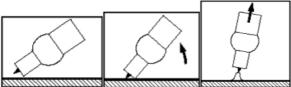
long of an arc will be held or the travel speed will vary from slow to fast

(see following)

- A. Weld speed is too fast.
- B. Weld speed is too slow.
- C. Arc is too long.
- D. Ideal weld.

A solid weld bead requires that the electrode be moved slowly and steadily along the weld seam. Moving the electrode rapidly or erratically will prevent proper fusion or create a lumpy, uneven bead. To prevent ELECTRIC SHOCK, do not perform any welding while standing, kneeling, or lying directly on the grounded work.

Finish the bead


As the coating on the outside of the electrode burns off, it forms an envelope of protective gasses around the weld. This prevents air from reaching the molten metal and creating an undesirable chemical reaction. The burning coating, however, forms slag. The slag formation appears as an accumulation of dirty metal scale on the finished weld. Slag should be removed by striking the weld with a chipping hammer.

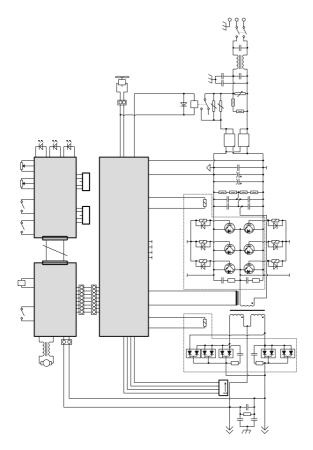
TIG OPERATION

9.1 Tears off the main attaching plug, Turn off the power source. The ground cable connects the positive electrode and screw it tighter. The end of the ground cable connects the work piece. The torch cable connects the cathode and screw it clockwise. Tighter the gas tube bolt which connect the protection gas cylinder. Inserts the main attaching plug.

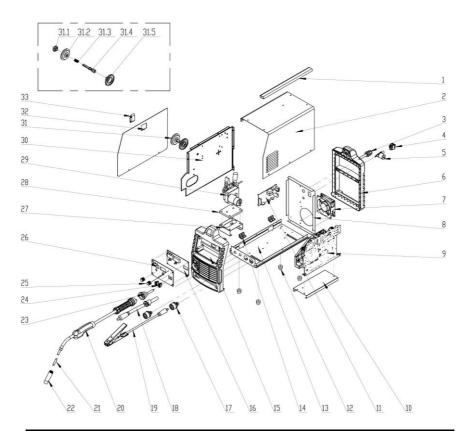
9.2 The touch pilot arc Warning! Turn on the power source, Welding torch's tungstic electrode already charged. The tungstic electrode could not touch anything. This series welding machine TIG weld uses contact striking the arc way:

Striking the arc method following step:

A. Turns on the welding torch built-in air valve
Approaches the striking the arc spot the spray nozzle to cause the
tungstic electrode and the work piece is separated 2-3mm
B. Slowly lifts the welding torch to cause the tungstic electrode contact
work piece


C. Lifts the welding torch to the normal position, starts to weld

Trouble shooting Chart


NO	Breakdown	Analysis	Solutions
	1 Yellow Indicator is on	Voltage is too high (≥15%)	Switch off power source; Check the main supply; Restart welder
		Voltage is too low (≤15%)	when power recovers to norma state.
1		Bad power ventilation lead to over-heat protection	Improve the ventilation condition.
		Circumstance temperature is too high.	It will automatically recover when the temperature low down.
		Using over the rated duty-cycle.	It will automatically recover when the temperature low down.
	Wire feeding	Potentiometer not in the proper status	Change potentiometer
	motor don't work	Nozzle is blocked up	Change nozzle
		Feed roller is loosen	Firm the bolts
3	3 Cooling Fan	Switch broken	Replace the switch
	not working or turning	Fan broken	Replace or repair the fan
	very slowly	Wire broken or falling off	Check the connection
	Arc is not stable and splash is large	Too large contact tip makes the current unsteady	Change the proper contact tip or roller
4		Too thin power cable makes the power astaticism	Change the power cable
		Too low input voltage	Enhance the input voltage
		Wire feeding resistance is too large	Clean or replace the liner and the torch cable had better in the line direction.
	arc can't be	Earth cable break	Connect earth cable

5	pilot	Work piece has much greasy dirty or rusty stain	Clean greasy dirty or rusty stain
		Torch is not connected well	Connect the torch again
6	No shielded gas	Gas pipe is pressed or blocked up	Check gas system
		Gas system rubber pipe break	Connect gas system and bind firmly
7	Others		Please connect with our company

Main Circuit chart

Spare Part List

NO	CODE	DESCRIPTION	QTY
1		handle	1
2		shell	1
3	1.1.11.26.0080	power line	1
4	2.07.80.001	switch	1
5	1.2.07.02.3781	valve wires	1
6		plastic back panel	1
7	1. 2. 07. 02. 3945	fan wires	1
8		back panel	1
9	1.1.05.02.0578	main control board	1
10		main panel support board	1
11	1.1.05.02.0191	control PCB board	1
12	2.05.05.999	machine leg	4
13		bottom panel	1

	0.0547.040	T	1.0
14	2.05.17.012	plastic hinge	2
15		plastic front board	1
16	1.1.05.07.0258	front panel control board	1
17	2.07.57.967	Euro socket	2
18	1.2.07.02.3963	output socket wires	1
19	1.2.08.02.0471	negative output cable	1
20	2.20.08.861	CO2torch (Euro)	1
21		tip	1
22		nozzle	1
23	1.2.07.02.3220	torch socket wires	1
24	2.03.30.799	Welding mode switch wires	1
25	2.07.11.049	potentiometer knob	2
26		front panel support board	1
27		Wire feeder fixing plate	1
28		Wire feeder plate	1
29	2.20.09.829	mini wire feeder	1
30		plate	1
31	1.2.01.01.5139	wire assemble	1
31.1	2.05.05.307	ADJUSTING NUT	1
31.2	2.05.05.306	HOLDER END, LOOSE	1
31.3	2.06.29.037	SPRING	1
31.4	2.05.05.308	BOLT	1
31.5	2.05.05.305	HOLDER END, FIXED	1
32		Turning plate	1
33	2.08.07.001	Wire feeder lock	1

WARRANTY INFORMATION

This warranty is provided by Total Tools (Importing) Pty Ltd 20 Thackray Road, Port Melbourne, VIC 3207 (we, us, our).

Express warranty

Subject to the exclusions set out below, we warrant that this product will be free from defects in materials or workmanship for a period of 12 months from the date of purchase.

The benefits conferred by this warranty are in addition to all rights and remedies which you may be entitled to under the Australian Consumer Law, and any other statutory rights you may have under other applicable laws. This warranty does not exclude, restrict or modify any such rights or remedies.

Warranty exclusions

This express warranty does not apply where a defect or other issue with the product is caused by normal wear and tear, misuse or abuse of the product.

Consumer guarantees

Our goods come with guarantees that cannot be excluded under the Australian Consumer Law. You are entitled to a replacement or refund for a major failure and for compensation for any other reasonably foreseeable loss or damage.

You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.

Warranty claims

To make a claim under this warranty, you must bring the product along with the proof of purchase and any other documentary evidence which you think is relevant to the Total Tools' place of purchase where the claim will be handled on our behalf. Any cost incurred by you in bringing the product to the place of purchase will be borne by you.

To make a claim under this warranty, the product and proof of purchase must be returned to the Total Tools place of purchase during the warranty period specified above.

If your warranty claim is accepted, we (or the Total Tools store that handles the claim on our behalf) will, at our discretion, repair or replace the product, or refund money to you and take back the product.

MIGARC160 POWER SOURCE	Warranty Period
Original main Transformer	1 Year
Original main power rectifiers, printed circuit	2 Year
boards and power switch semiconductors	
MIGARC160 ACCESSORIES	Warranty Period
Plasma torch, work lead	3 months
Plasma torch consumable items	Nil